If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44.4+32.26y(0.002372-y)=100-29.41y(1+y)
We move all terms to the left:
44.4+32.26y(0.002372-y)-(100-29.41y(1+y))=0
We add all the numbers together, and all the variables
32.26y(-1y+0.002372)-(100-29.41y(y+1))+44.4=0
We multiply parentheses
-32y^2+0.075904y-(100-29.41y(y+1))+44.4=0
We calculate terms in parentheses: -(100-29.41y(y+1)), so:We get rid of parentheses
100-29.41y(y+1)
determiningTheFunctionDomain -29.41y(y+1)+100
We multiply parentheses
-29y^2-29y+100
Back to the equation:
-(-29y^2-29y+100)
-32y^2+29y^2+29y+0.075904y-100+44.4=0
We add all the numbers together, and all the variables
-3y^2+29.075904y-55.6=0
a = -3; b = 29.075904; c = -55.6;
Δ = b2-4ac
Δ = 29.0759042-4·(-3)·(-55.6)
Δ = 178.20819341722
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29.075904)-\sqrt{178.20819341722}}{2*-3}=\frac{-29.075904-\sqrt{178.20819341722}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29.075904)+\sqrt{178.20819341722}}{2*-3}=\frac{-29.075904+\sqrt{178.20819341722}}{-6} $
| 2x+x=298 | | x^2+8x+40=8 | | -2m-6m=8 | | 7-21(x+3)=15(2x-5) | | |2x+1|+|x+8|=4x | | 7x-11=2x+3 | | -1/2(8x-10)=2x+2 | | (x+5)^2+(x-2)^2=37 | | 2x^2-15-77=0 | | 2x^2-56=73 | | x+1÷5-3(x-1)÷10=2 | | (x+5)2+(x-2)2=37 | | 27^x+2=9^2x | | 8^x-3=32^x+2÷4^-x | | 20.6=440x/25+x | | x(x-5)=59 | | 44.44+29.85y(0.002111-y)=100-35.71y(1+y) | | (2x+5)(7x-25)=180 | | X³-x²-48=0 | | 80.65+18.18y(0.006991-y)=100-9.76y(1+y) | | 17.86+21.98y(0.003746-y)=100-68.03y(1+y) | | 2^(y-1)+2^(y+2)=288 | | 2a-(-3a)=10 | | 14.93+19.61y(0.00451-y)=100-75.76y(1+y) | | 5×+3y=1 | | (9x-2)(x-4)=0 | | x=4,x=2 | | 44.4+29.9y(0.00214-y)=100-35.1y(1+y) | | A+b=55 | | 3y+9=5y+7 | | x+2x=15000000 | | 9x^2+36x-405=0 |