If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44.44+29.85y(0.002111-y)=100-35.71y(1+y)
We move all terms to the left:
44.44+29.85y(0.002111-y)-(100-35.71y(1+y))=0
We add all the numbers together, and all the variables
29.85y(-1y+0.002111)-(100-35.71y(y+1))+44.44=0
We multiply parentheses
-29y^2+0.061219y-(100-35.71y(y+1))+44.44=0
We calculate terms in parentheses: -(100-35.71y(y+1)), so:We get rid of parentheses
100-35.71y(y+1)
determiningTheFunctionDomain -35.71y(y+1)+100
We multiply parentheses
-35y^2-35y+100
Back to the equation:
-(-35y^2-35y+100)
-29y^2+35y^2+35y+0.061219y-100+44.44=0
We add all the numbers together, and all the variables
6y^2+35.061219y-55.56=0
a = 6; b = 35.061219; c = -55.56;
Δ = b2-4ac
Δ = 35.0612192-4·6·(-55.56)
Δ = 2562.729077766
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35.061219)-\sqrt{2562.729077766}}{2*6}=\frac{-35.061219-\sqrt{2562.729077766}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35.061219)+\sqrt{2562.729077766}}{2*6}=\frac{-35.061219+\sqrt{2562.729077766}}{12} $
| (2x+5)(7x-25)=180 | | X³-x²-48=0 | | 80.65+18.18y(0.006991-y)=100-9.76y(1+y) | | 17.86+21.98y(0.003746-y)=100-68.03y(1+y) | | 2^(y-1)+2^(y+2)=288 | | 2a-(-3a)=10 | | 14.93+19.61y(0.00451-y)=100-75.76y(1+y) | | 5×+3y=1 | | (9x-2)(x-4)=0 | | x=4,x=2 | | 44.4+29.9y(0.00214-y)=100-35.1y(1+y) | | A+b=55 | | 3y+9=5y+7 | | x+2x=15000000 | | 9x^2+36x-405=0 | | 21y+3=5y-5 | | 100+4*x=420 | | 3n+2n+1=4 | | 18/x+18/42=1 | | 7q-3(4-q)=28 | | 1/m-4(m+4)m=8 | | 2(x+7)=87 | | -x–8=-17. | | x+2=9. | | -6x=-12. | | x+3=8. | | -2x+6=12. | | 3h-2.8=5.3 | | x+4=7. | | 3h-2(h-1=10) | | 0.3=840,000/x | | 3h-2(h-1=10 |