If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44=(2x+1)(x+3)(1/2)
We move all terms to the left:
44-((2x+1)(x+3)(1/2))=0
We add all the numbers together, and all the variables
-((2x+1)(x+3)(+1/2))+44=0
We multiply parentheses ..
-((+2x^2+6x+x+3)(+1/2))+44=0
We multiply all the terms by the denominator
-((+2x^2+6x+x+3)(+1+44*2))=0
We calculate terms in parentheses: -((+2x^2+6x+x+3)(+1+44*2)), so:We get rid of parentheses
(+2x^2+6x+x+3)(+1+44*2)
We add all the numbers together, and all the variables
(+2x^2+6x+x+3)89
We multiply parentheses
178x^2+534x+89x+267
We add all the numbers together, and all the variables
178x^2+623x+267
Back to the equation:
-(178x^2+623x+267)
-178x^2-623x-267=0
a = -178; b = -623; c = -267;
Δ = b2-4ac
Δ = -6232-4·(-178)·(-267)
Δ = 198025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{198025}=445$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-623)-445}{2*-178}=\frac{178}{-356} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-623)+445}{2*-178}=\frac{1068}{-356} =-3 $
| 10x+15-9×=10 | | 10x+3-9×=10 | | 44=(2x+1)(x+3)/2 | | 5=100-5x | | 25=50-5x | | 2x+3=5/6 | | 26=50-2x | | 2x+3(2×+2/3)=18 | | 1*(x+6)-(4-x)2=0 | | 4x+8/8=4x+6/3 | | (1)*(6+x)-(4-x)*(2)=0 | | x*5+4=10 | | 6x-18=-18 | | (5x+1)^2-(5x-3)(5x+3)=30 | | 4(5-2x)=3+1/2 | | -23=3/7i | | 9/x=7/13 | | 2x+5+4x-3x-3=19+10+5x | | 54=14-8x/7 | | 41=25-4x/5 | | -16+9x/4=29 | | .132=x+(.122-x)*1.18 | | X+3/4+5*(7x+9)/3=3(4x+3)/12-7/2 | | (x+4)-12=0 | | x+.5x=1600 | | 9x²-6x=-1 | | -24+5x/8=41 | | 3-2x/9=13 | | 3x/4+6=9 | | 16x4-1=0 | | d^2-18d+81=1 | | (Y)2=4x |