If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44y^2+17y=0
a = 44; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·44·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*44}=\frac{-34}{88} =-17/44 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*44}=\frac{0}{88} =0 $
| 2y^2-9y-195=0 | | 6c=-43 | | (X^2)-50x+2.25=0 | | 8x+8=6x-32 | | (B+W=30)=(X=y=84) | | -8.8+7.7r=7.1 | | 4m-2=4m | | 400/200=200/x | | 0=3y+21 | | x + 4 = 3x + 2 | | 120=76+2w | | 4.2+v/4=-2.2 | | 4=w/3+7 | | 5x+150=x | | 2x/3x=25 | | 2/3(x−9)=12 | | 12+8a=100 | | a=1/2(28)(38) | | 2x*3x=25 | | 4z+14=54 | | 3.50+x=15 | | 2x/4-3/4=x+5/6 | | 256=43x | | 2y-3=-70 | | .2x-1.8/5=4.2 | | 12n+4=10 | | 9n/(7-6n)=15 | | 2x/4-3=x+5/6 | | 13=-5x-62 | | 2=(m-8)-5m | | 1,056=6(x+16) | | (k+2)^2-16=0 |