If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45/78k+-45=487536k
We move all terms to the left:
45/78k+-45-(487536k)=0
Domain of the equation: 78k!=0We add all the numbers together, and all the variables
k!=0/78
k!=0
k∈R
-487536k+45/78k=0
We multiply all the terms by the denominator
-487536k*78k+45=0
Wy multiply elements
-38027808k^2+45=0
a = -38027808; b = 0; c = +45;
Δ = b2-4ac
Δ = 02-4·(-38027808)·45
Δ = 6845005440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6845005440}=\sqrt{5184*1320410}=\sqrt{5184}*\sqrt{1320410}=72\sqrt{1320410}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{1320410}}{2*-38027808}=\frac{0-72\sqrt{1320410}}{-76055616} =-\frac{72\sqrt{1320410}}{-76055616} =-\frac{\sqrt{1320410}}{-1056328} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{1320410}}{2*-38027808}=\frac{0+72\sqrt{1320410}}{-76055616} =\frac{72\sqrt{1320410}}{-76055616} =\frac{\sqrt{1320410}}{-1056328} $
| A=1/2h(6+1) | | 2(2x-1)=x+3(x+2) | | 4(2x+1)+3=x-7 | | 3+2=3x-2 | | 0.1+2(0.4x+1)=12 | | -5/3+3/5y=-1/2 | | X+4x-8=6x+2 | | 1+2(x+5)=x+3(x-1) | | 5x-3x+(7x2-10)²=16 | | (2x-90)=(180-2x) | | (2x-90)+(180-2x)=360 | | (2x-90)+(180-2x)=180 | | (2x-90)+(180-2x)=90 | | 4+4(x-2)=2(x+1)-x | | 180-2x=360 | | 4x+4(4x-38)=28 | | 4x+10-5x2=40 | | 1414=11+8w ⋅6 | | -11/3=1/5u-11/2 | | x-4*2=1/4-x | | 12g+3g²=0 | | -4/3=1/5u-3/2 | | (4t^2)-36t=0 | | 4x^2+10x+30=0 | | 4(3+s)=32 | | 7/6*4=3x+2 | | 50a^2-40a=0 | | 8x-8=8x–72 | | 4x-8+4x=8x–72 | | 10x+4.9x^2=0 | | 16x+7=-1+17x | | 2x^2+6x–20=0 |