45=-q(-q+6)

Simple and best practice solution for 45=-q(-q+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45=-q(-q+6) equation:



45=-q(-q+6)
We move all terms to the left:
45-(-q(-q+6))=0
We add all the numbers together, and all the variables
-(-q(-1q+6))+45=0
We calculate terms in parentheses: -(-q(-1q+6)), so:
-q(-1q+6)
We multiply parentheses
1q^2-6q
We add all the numbers together, and all the variables
q^2-6q
Back to the equation:
-(q^2-6q)
We get rid of parentheses
-q^2+6q+45=0
We add all the numbers together, and all the variables
-1q^2+6q+45=0
a = -1; b = 6; c = +45;
Δ = b2-4ac
Δ = 62-4·(-1)·45
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{6}}{2*-1}=\frac{-6-6\sqrt{6}}{-2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{6}}{2*-1}=\frac{-6+6\sqrt{6}}{-2} $

See similar equations:

| (x+9)/5=(x-1)/3 | | 2=-y-2/5 | | 6(5x+7)=-18 | | 8v-14=5v+6v-10 | | 121x2–144=0 | | 96=-2y-6y | | 4+7(x-12)=-30 | | 72x−23=12x−83 | | 2c-88=c+29 | | 3(x-2)+8=4x-5 | | -7(w-4)-19=-68 | | 2c-88=2c+29 | | 0.125+-0.625y+5y=1 | | 7n+9=20-3n | | 20=5(p-1)+5 | | 45=-9(-q+6) | | 2t-25=t+41 | | 4x-7x+140=85 | | 8(2w=2)=7(3w+2) | | 7p-6=5p-2 | | 45=-9(-q | | 120+25x=45x. | | 2c-70=c+28 | | -5(p-8)=25 | | 3x/5-12=x | | -18=-15x-17 | | 4p-5p=-5 | | 8x+5=2x+3+ | | 20(6x+14)=18(x-4) | | z+z-46=z+50 | | 39=6c+3 | | 8x+4+2x+9=49 |

Equations solver categories