If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=x2
We move all terms to the left:
45-(x2)=0
We add all the numbers together, and all the variables
-1x^2+45=0
a = -1; b = 0; c = +45;
Δ = b2-4ac
Δ = 02-4·(-1)·45
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-1}=\frac{0-6\sqrt{5}}{-2} =-\frac{6\sqrt{5}}{-2} =-\frac{3\sqrt{5}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-1}=\frac{0+6\sqrt{5}}{-2} =\frac{6\sqrt{5}}{-2} =\frac{3\sqrt{5}}{-1} $
| 3+4a=75 | | X(.50)+x(.25)+16=x | | -{6z-(17z=4)}=4+(10z+5) | | -10n+1=-39 | | 2(6x-5)-4x=4(x-3)-2 | | 8(v-2)-4v=-28 | | 2(6x-5)-4x=4(x-3)/2 | | 9^(x+5)=6^x | | (x+3)(+x^2-3x+9)=0 | | (x+3)(x2-3x+9)=0 | | -6(x+1)-x-10=-7(x+4)+12 | | 25c=9/5c+32 | | 2x4-5x3-14x2+5x+12=0 | | x¨12=x^2+2x)^10 | | 50-x+80+2x+40=180 | | 2(5m-3)=6(2m+5) | | 2x4-5x3-14x2-5x+2=0 | | 5)46=6a | | 9a-9=15a-9 | | 0.5p+3=5 | | 5 | | 8(2x+9)=21-(x+6) | | 7x+x+57=232 | | -4(2x-12)=-248 | | 9x(4x+2)=13 | | 3(x+14)=147 | | -16+1-7x+x=x+6 | | 68=1/5x-x | | 6x-65=8x+135 | | 2(x2+1/x2)-9(x+1/x)+14=0 | | 43=12x+17 | | -54=-7x+107 |