If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45j^2=80
We move all terms to the left:
45j^2-(80)=0
a = 45; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·45·(-80)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*45}=\frac{-120}{90} =-1+1/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*45}=\frac{120}{90} =1+1/3 $
| 19=x/4-16 | | 0,25x+x=300 | | 8(3x–2)=–16 | | 1/2x+6=2x-9 | | 5(x-3)+2=3x+3 | | (x+50)+40=180 | | 60x+22=x+5.2 | | d-66.00=33.00 | | 9=2+x= | | 26+2b=64 | | x-0.02x=4369.68 | | 2w+1=21 | | y-405=238 | | x-0.2x=4369.68 | | 20x+14=10(1x+8)+4 | | 30=3v+9 | | -3(-9w+8)-8w=3(w-6)-8 | | c+3=6= | | -5w-33=4(w-6) | | 4(-2x+8)=-10x+44 | | 3x^2+4x^2=49 | | y-(12y+17y)+(9y-13y+3)=16 | | 111=y5 | | 0.11x=0.0352 | | 15x-(10+6x)=62 | | 20x-7=3(5x+6) | | 0.4-0.5(x+10)=2.4 | | 5(x-6)-7x=-38 | | -2y-10=-6(y-1) | | -3n+27=1n-9 | | (-3)=(6)-n | | -33=-5w+2(w-3) |