If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x+9x^2=0
a = 9; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·9·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*9}=\frac{-90}{18} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*9}=\frac{0}{18} =0 $
| 3(2x-11)=2(5-x) | | (x+3)^2=3x+13 | | 5x2-120x=0 | | 15-|x-3|=-2 | | 4x+12=-12- | | (2x+18)(9+x)=0 | | 7x+26=x+5 | | 3,2x+16,2=6,7x+5,7 | | 7(x+4)-3(x+1)=x+7 | | a+a=38 | | -37=-6x+5 | | 4x(3x-8)=0 | | 10(2y+10)=120y | | 1+9x=89-x | | -40-(18+x)=20 | | 108-9x=20 | | 18/x=3,0 | | 36+2x=-18 | | 10=3x/12 | | 3(2x-10)=2(5-x) | | 3x=0,998 | | 4x2-6x=0 | | 97x=0,998 | | 3z2+4z=0 | | 7,6x+17,9=3,1x+7,1 | | x=18-13 | | x=18−13 | | 3x+2=6x−7 | | 9x+12=13x+68 | | 3⋅(x−6)=−30 | | 3x(-3+x)=-5 | | -5(x-3)+7=2 |