If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-10x=0
a = 45; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·45·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*45}=\frac{0}{90} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*45}=\frac{20}{90} =2/9 $
| yᶺ(4)+yᶺ(3)-3y”-5y´-2y=0 | | 49x2=1 | | r/6+37=44 | | 4w/9=1/8 | | (2x+5)+(4x+1)=360 | | 2/3x+8=2 | | -3x4=-8 | | 5-2(3x-4)=37 | | 1/4x+13=15 | | 4+9z=40 | | -2y–7=3 | | k+33/5=10 | | 1=4x-4x | | 9(h-90)=63 | | -4(x+1)+6(x+3)=-2 | | (x+40)+(3x)=360 | | (2y-5)-8=(3-y)+3 | | 1/5w+1/5=−6/5w+1/3 | | 10-10y=-30 | | 3x+10+10x-30+x-10=180 | | 1/10x+11=1/5x+10 | | 3(x+7)-2(x-9)=97 | | y/8/19=30 | | 2x^2=15-8x | | 9x+3x=10 | | 2(6-4x)=25-10x | | z4− 1= 3 | | 12x-21=5x-42 | | 4(p-15)=6p | | -w+294=221 | | 2.50r+15.00=60.00 | | 7+i=5 |