If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-32x-80=0
a = 45; b = -32; c = -80;
Δ = b2-4ac
Δ = -322-4·45·(-80)
Δ = 15424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15424}=\sqrt{64*241}=\sqrt{64}*\sqrt{241}=8\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{241}}{2*45}=\frac{32-8\sqrt{241}}{90} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{241}}{2*45}=\frac{32+8\sqrt{241}}{90} $
| 3^2x=169 | | 9x+54=225 | | n(2^64)=30568377312064202855 | | 9a=207 | | a-18=35 | | (P-2)(p+6)=0 | | 2-4b=-6 | | 5r-(2r+81)=16 | | x/39=2/13 | | t=3+1/5 | | 10-5t+10=4 | | 22+2y-3=9y-11-2y | | x-10x=34 | | 5t=-9 | | -4t+t=10-1 | | -4t+1=-t+10 | | C=15+0.04n | | 9z+18=45 | | 10x=42+7x | | 2(7a+7)=-20-3a | | 2n=134 | | 56x+280=112 | | 6(x+12)=-4 | | 10+x.3=4 | | 31-8x=47 | | x+50=2x-9 | | 7.4=3.8^x | | X/2-7.3=2.7y | | 2b-13=19 | | 13(d+1)=169 | | (0.5y+4)/(1.2+8)=5/3 | | x+63+35=180 |