48/x+8*2=12/x*4

Simple and best practice solution for 48/x+8*2=12/x*4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 48/x+8*2=12/x*4 equation:



48/x+8*2=12/x*4
We move all terms to the left:
48/x+8*2-(12/x*4)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x*4)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
48/x-(+12/x*4)+8*2=0
We add all the numbers together, and all the variables
48/x-(+12/x*4)+16=0
We get rid of parentheses
48/x-12/x*4+16=0
We calculate fractions
768x/16x^2+(-12x)/16x^2+16=0
We multiply all the terms by the denominator
768x+(-12x)+16*16x^2=0
Wy multiply elements
256x^2+768x+(-12x)=0
We get rid of parentheses
256x^2+768x-12x=0
We add all the numbers together, and all the variables
256x^2+756x=0
a = 256; b = 756; c = 0;
Δ = b2-4ac
Δ = 7562-4·256·0
Δ = 571536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{571536}=756$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(756)-756}{2*256}=\frac{-1512}{512} =-2+61/64 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(756)+756}{2*256}=\frac{0}{512} =0 $

See similar equations:

| 2h+31=97 | | b2-5=2 | | 9h-16=-16-9h | | 12/x+9*3=3*6 | | 2=-10/2+x | | 12/x+9=3*6 | | 4b+2=9 | | 3r=3r-4 | | 9x-56=6x+46 | | b2+3=4 | | 4+2z=28 | | x/1,2=15 | | 12/x+9=3 | | 4=2(f+3) | | h(20)=-3(20)+5 | | e=12.25 | | (6-4i)(6+4i)=52 | | 0.03(6t+6)=0.18(t+1)+0.03 | | 2r+6=3 | | h3− 5=3 | | 7(x-2)+5=3(2x-1)+2 | | 2=-2-2n | | 63q=7 | | (x+2)^2+11(x+2)+18=0 | | 8-4s=-2s-8 | | 5(3x-2)+5=3(2x-1)+1 | | ½(8x-10)+1=-3x+17 | | 100(.40x+5=100) | | 100(.40x+5=100( | | 27=-3(5x-2+2x) | | 2/x+8=35 | | 4y+3y-5+10=26 |

Equations solver categories