48=(12+2x)(20+2x)

Simple and best practice solution for 48=(12+2x)(20+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 48=(12+2x)(20+2x) equation:



48=(12+2x)(20+2x)
We move all terms to the left:
48-((12+2x)(20+2x))=0
We add all the numbers together, and all the variables
-((2x+12)(2x+20))+48=0
We multiply parentheses ..
-((+4x^2+40x+24x+240))+48=0
We calculate terms in parentheses: -((+4x^2+40x+24x+240)), so:
(+4x^2+40x+24x+240)
We get rid of parentheses
4x^2+40x+24x+240
We add all the numbers together, and all the variables
4x^2+64x+240
Back to the equation:
-(4x^2+64x+240)
We get rid of parentheses
-4x^2-64x-240+48=0
We add all the numbers together, and all the variables
-4x^2-64x-192=0
a = -4; b = -64; c = -192;
Δ = b2-4ac
Δ = -642-4·(-4)·(-192)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32}{2*-4}=\frac{32}{-8} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32}{2*-4}=\frac{96}{-8} =-12 $

See similar equations:

| 2x2+11x+2=0 | | h=5+-14 | | 10x+2x=(10+2)x-2x | | 3x^2+18x-70=0 | | 40-r=12 | | 2(x+7)=6x+10 | | (8x-1)=(3x+4)=(3x+9) | | (x-2)^2=6 | | r+33=33 | | g(-1/3)=-1/3+2 | | k/4-16=-14 | | 2-n/2=3n+16 | | |2x-6|-10=8 | | 3x5=4+x | | 7x-98=-9x+50 | | 7x+4(x15)=-181 | | 18x+27=81 | | x/8+1=3 | | 5/6=n24 | | 5x+55=2x+100• | | -16=-3x+-6 | | 2.5x10(-15)=3.9x10(26) | | -5x+1/2x-4=-13 | | 11x-28=7x-8 | | 18g-(-3g)=105 | | F(-5)=x^2-2x-7 | | 4x+2x+9=0 | | 5+3y+y=45 | | y-5.6=-3.5 | | (2x+1)^2-6=0 | | 47(2x)=94 | | -28=f/7-34 |

Equations solver categories