If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+672x-3969=0
a = 48; b = 672; c = -3969;
Δ = b2-4ac
Δ = 6722-4·48·(-3969)
Δ = 1213632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1213632}=\sqrt{28224*43}=\sqrt{28224}*\sqrt{43}=168\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(672)-168\sqrt{43}}{2*48}=\frac{-672-168\sqrt{43}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(672)+168\sqrt{43}}{2*48}=\frac{-672+168\sqrt{43}}{96} $
| 36=1/3b6 | | k+34=30 | | 34.8+0.16x=78.8 | | 2y-4/3y+1=21 | | 16x2+224x-1323=0 | | 2x3-4x2-2x=0 | | k+39=34 | | 7a+3-5a=6 | | x^2+2x+36=44 | | -1/3b=-30 | | 1/2(11x-1)=3x+7 | | 1/3k=33 | | ½(11x-1)=3x+7 | | n+26=-49 | | y=500(1+0.08)6 | | 36=1/2b(6) | | 25.12=1/3(12.56*h | | 22=2x+2(4) | | 22=2x=2(4) | | 5.4+u÷3=-2.1 | | F(x)=-3.3×+1 | | 22=2l+2(4) | | 3(11r-13)=-7r+57=32r | | 3x+7=11x-1 | | 2x+7=5x+1= | | 7x-3=24+12x | | 7y+2y=7 | | 0.55(x-175)=1(x-100) | | 60=2(x-10) | | 30x-5=15 | | -4/3t-3/2=1/12t+11/6-19/12t | | Y=-2.2x+12.5 |