49-y=7/36y

Simple and best practice solution for 49-y=7/36y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 49-y=7/36y equation:



49-y=7/36y
We move all terms to the left:
49-y-(7/36y)=0
Domain of the equation: 36y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
-y-(+7/36y)+49=0
We add all the numbers together, and all the variables
-1y-(+7/36y)+49=0
We get rid of parentheses
-1y-7/36y+49=0
We multiply all the terms by the denominator
-1y*36y+49*36y-7=0
Wy multiply elements
-36y^2+1764y-7=0
a = -36; b = 1764; c = -7;
Δ = b2-4ac
Δ = 17642-4·(-36)·(-7)
Δ = 3110688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3110688}=\sqrt{144*21602}=\sqrt{144}*\sqrt{21602}=12\sqrt{21602}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1764)-12\sqrt{21602}}{2*-36}=\frac{-1764-12\sqrt{21602}}{-72} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1764)+12\sqrt{21602}}{2*-36}=\frac{-1764+12\sqrt{21602}}{-72} $

See similar equations:

| 13p+108=285 | | 2.3x-5+3x+8=19.5 | | x2+9=90 | | (-7)-3x=(-4x)-7 | | 36^7=6^x | | 7p+4=29=2p | | 13p=108 | | 1/2(8x+32)=x^2+4x | | 4x-43+3x=10(3x-2) | | 2w+8=6 | | 3x-4=8(x/5-1) | | 49-y=7/36 | | 2x+12=x+14 | | (3x/3x-1)+(2/x)=1 | | 4(2+5x)=2x-28 | | g=3/7=2/7 | | (-9x)+9=(-5)-2x | | 2v=18-7 | | 7n+4-10n=3n+3-5n | | 9-4x=8x-15 | | (3^(x+2))-3^x=(8/9) | | 2(3y–6)=24 | | -3p-5=-7-2p | | -t^2+4t+6=0 | | x=(-10)+3x | | -3z-1=8-3z* | | 3x+5/2=-2 | | 6m-4=(-m)+10 | | 2(7x+8)=5(8x+9) | | 6x2+1=121 | | 2(x)=3x-17 | | b+7-9=1 |

Equations solver categories