If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49k^2+31k=0
a = 49; b = 31; c = 0;
Δ = b2-4ac
Δ = 312-4·49·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-31}{2*49}=\frac{-62}{98} =-31/49 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+31}{2*49}=\frac{0}{98} =0 $
| 7q=-2+5q | | 10x+28-3x=7x+38 | | n/8+23=26 | | X+1+x=25 | | (-3x)(-3)(-x)(-1)=0 | | 9(2x+80)=270 | | 40=f/4+30 | | 7n-9=75 | | (4x+7)(x+2)=0 | | x/7=(x+20)/2 | | 10x+28-3=7x+38 | | 13y=18+4y | | 2a+3a+a=360 | | 9=k-71/2 | | 5(1+4x)+2x=24 | | 10+n/2=48 | | 5(z+3)=90 | | 7x=(x+20)/2 | | x=-0.004x^2+x+2.5 | | 2(7+2y)=32+6y | | 20-3x=3x | | 7x=(x+20)2 | | 6=g+12/9 | | -14(z-5=-14z+70 | | 8h-6=58 | | 90=20(x-8) | | -3x+(2x-2)=18 | | 8x-7=8x+5 | | 3x+50=3x+5 | | (5w+4)+11w=180 | | 40+x=220 | | 19+5.50h=10+6.75h |