If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2+28n+4=0
a = 49; b = 28; c = +4;
Δ = b2-4ac
Δ = 282-4·49·4
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$n=\frac{-b}{2a}=\frac{-28}{98}=-2/7$
| 2(5x)-8x+5=0 | | -84=-7(-2m+2) | | 25=0,5f+5 | | 90=-2k-8(k-5) | | 13x-2x=6 | | t^2+t-300=0 | | 4.2/3.6=x/20 | | x+.06x=106000 | | -6x+4=3-6x | | t^2+t+300=0 | | 87=-2(4+8k)-1 | | x-(13-4x)/4=1 | | 70=5.5(1)+b | | 5=z−4−3.z= | | 5=z/−4−3.z= | | -(3x)^2+6=-3 | | (y-3)^2-44=0 | | h+65=2.h= | | 3(2f+1)=15 | | R=42-0.7t | | 5v+2v-7v-3=24 | | 4(x-4)+7x=-104 | | 3x+2x-6=17 | | 2(8x+8)=2(5x+4) | | 104=-8(k-7) | | 2(8x+8=2(5x+4) | | 19=8r−5 | | 5/7=20/l | | 2x^2−216=0 | | 5x-2((x+1)=10 | | 2(x+8)=2(5x+4) | | 2y(9-4)^2=-350 |