If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2-16=0
a = 49; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·49·(-16)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*49}=\frac{-56}{98} =-4/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*49}=\frac{56}{98} =4/7 $
| x+11+4x-41=4x | | -3x-5(-4-7)=188 | | 8p-49+39=6p+22 | | -4x=3x+-14 | | 13x-5(-4x-7)=188 | | 4b-45+2b=b+50 | | 35=7/2u | | 20x+5)(2+3)=17x+2 | | 3c+3c/2+4c-2+c=169 | | 2(x+1)^2+7=1 | | .5=q+.6 | | 109=-7x-6(4x+18) | | s+30+45=30s-41 | | C(x)=45.75-0.05x | | 3x-5(x-4)=-9+4x+17 | | |9n-9|+10=7 | | 6x+x-5=2 | | h/14=5/7 | | 3x−5(x−4)=−9+4x+17 | | 15x-10)/5=15x-2 | | 120/x+300/2x=9 | | -14+3(n+10)=7(2n+4)+n | | 4x+72x+5=28 | | 10x-20=-5(7x-23) | | -16t+15=-17t | | 2s+27=5s | | y-8=4(3-y) | | -3z+15-z=39 | | 2.5x=13.33 | | 56+-8p=14 | | 32-x/x=6/10 | | .5x-10=22 |