If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49r^2-4=0
a = 49; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·49·(-4)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*49}=\frac{-28}{98} =-2/7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*49}=\frac{28}{98} =2/7 $
| 10×-5y=30 | | -4(2p+4)-30=5(5p+4) | | -x+9=5(2x-2)+8 | | 2x+5+3x+2=180 | | 7x-3-2=7x-3-2 | | 4(c-6)=5(c+7) | | 2(4x-1)+1=-25 | | -3y-6.1=3.5 | | 9-6n+4n=49-80 | | 2/3x=1/3x+-10 | | -74+11y+8=6(3y-4)-7 | | 4(2x+2)-8=-24 | | m/4=m+7/8 | | -74+11y+8=6(3y-4-7 | | 3x+17=2x+27 | | 3n+10=18-n | | 16x=12x+1 | | 78-x=180 | | 13x+7=2×-15 | | 11(c-2)+6=5+c-21 | | 8/3x=2 | | 3(a-2)=6a-(3a=6) | | 5e-7=3e+11 | | 3r^2-52r+1402=0 | | 3z3=z | | 100=5000/x-25 | | 130=10+8x+4x | | x=14+0.084/0.25 | | 3x-12+2x=2(x+6) | | 3(p-1)=-6-(p+5) | | x^-3x-140=0 | | 23=2y+5 |