If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+28x=22
We move all terms to the left:
49x^2+28x-(22)=0
a = 49; b = 28; c = -22;
Δ = b2-4ac
Δ = 282-4·49·(-22)
Δ = 5096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5096}=\sqrt{196*26}=\sqrt{196}*\sqrt{26}=14\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-14\sqrt{26}}{2*49}=\frac{-28-14\sqrt{26}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+14\sqrt{26}}{2*49}=\frac{-28+14\sqrt{26}}{98} $
| z-8=22 | | -48=7n+100 | | x/(9-8)=7 | | 28=15-3x | | 0.016=1/x | | 17=5+-4n | | 13-9=19-16+x | | Y²+5y-24=∅ | | 28y+15=131 | | 4x2+8x+10=0 | | Y+5y-24=∅ | | 32t^2+80t+50=0 | | 3-(4/5x)=(5/2) | | 2x+1+x+55=180 | | 4w+-3=11 | | 2x+1=x+55 | | 48=8+5s | | Y=x*2+4x+9 | | 0.5x-0.08=8.2 | | (5/3)^-4×(5/3)^-5=(5/3)^3x | | f^2-5f-14=0 | | 56w-3w=5w | | 3850=x-0,08x | | −3x−7+x=6x+20−5x | | 1/4x+7=31 | | 3850=x-2x | | 8u^2+98u+24=0 | | 50+(1.5x)=75+(1*(200-x) | | t−2.87=5.93 | | (x+2)(x-3)=3x-1 | | x/7=-41 | | 5p-1=12p-72 |