If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-121x=0
a = 49; b = -121; c = 0;
Δ = b2-4ac
Δ = -1212-4·49·0
Δ = 14641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14641}=121$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-121)-121}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-121)+121}{2*49}=\frac{242}{98} =2+23/49 $
| 6+10x=16+5x | | 7+4a=3(a2-1) | | v+(43+v)=113 | | x^2+31x-90=0 | | y*y+3*y+450=0 | | 5x=12=7 | | 7x+3x+x=10x | | y-7/8=-3/4 | | 5c+c/2=27.5 | | -12(7+x)=4(x-1) | | 4x^2-6x+1.6=0 | | 203/16=a+171/18 | | n+50=2n | | 2x+8x+20=80 | | 2x-3x=x^2+6x+7 | | .50(4-6x)=8 | | x+x+6.5=7.5 | | (x-4)+9=15 | | 3/2x+4=13 | | 0.06(6t-5)=0.36(t+3)-1.38 | | 4(x-4)+9=6x-2(3+x) | | 5y+3(y-9)=6(y+1)-2 | | -52=2(9x+1) | | 4-7c=-38 | | 2.718281828^x-4(2.718281828)^-x=0 | | 12x+7=17x-8 | | 12x+5=4x+29 | | 17-3x=3=-2x-6x | | 3/4n+18=-13/4n | | (4x+37)+(7x+7)=180 | | -12x=80+4x | | -4p+13=-4p |