If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-122x+64=0
a = 49; b = -122; c = +64;
Δ = b2-4ac
Δ = -1222-4·49·64
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-122)-6\sqrt{65}}{2*49}=\frac{122-6\sqrt{65}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-122)+6\sqrt{65}}{2*49}=\frac{122+6\sqrt{65}}{98} $
| 5,832=sº¡¶ª | | 5,832=sºº∫£ | | 6x-(-3x+3)=-3+4x | | 2xˆ3-1=0 | | 7x+2(-9x+3)=x-(-4x+6) | | -7n+14=-7n+14 | | 2x+x÷2+x÷4=99 | | 27x64=x | | 3x+x=x+5x-6+90 | | 54=7/5x+5 | | 180-x=3(90-x)-50 | | 13×-5y=-2 | | 2=3x=-4(5+2x) | | 40=9x-14 | | 6(x-2)-6=21×-153 | | 14x+9=7x-9+80° | | W^3+3w^2-25w-75=0 | | −9x−21=−20x−87 | | 6t^2+9t=–2 | | 2e+4=22 | | 0=3p-3p | | 6t2+9t=–2 | | 8x2=x–6 | | 8s2=s–6 | | 7=-2x2 | | K^2+6k^2-4k-24=0 | | 2u2-8u=0 | | (3x-8)=(4x-19) | | -.65p-5=0.35p | | 8(x-5)-8=31x-232 | | -0.75p-2=9.25p | | 84/3x+11=15 |