If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-196=0
a = 49; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·49·(-196)
Δ = 38416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{38416}=196$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-196}{2*49}=\frac{-196}{98} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+196}{2*49}=\frac{196}{98} =2 $
| 5(9-x)=15 | | 2b*2-5b-6=0 | | 0.02(7000)+0.04x=0.035(7000+x) | | 0.02(7000)+0.04x=0.035(7000+x | | -3(5-7x)=-57 | | 10^4x-1=10^2x+9 | | 10^4x-1=10^2x-9 | | 4(x-10)=12 | | 17=12 | | -2(-1+1x)=26 | | 0.92x+0.96(16-x)=15.04 | | 9x-3=7x+17 | | (56789*1234536373)x-15=2 | | 9x+4=5x | | 7=-5r-2r | | 3/2x+4=5 | | -4(3v+3)=-12-4v | | x+.18x=532 | | -7(x+1)-10=24-8 | | x+8/8=x+8 | | 3/4r+22=220 | | -3x+9=39+26 | | (x+11)4=14 | | 73y=8(9y-2) | | 8-3.2x=6-3x | | 3+4x=6x+3 | | 3+4x=6x*3 | | 8+3x=2x+4 | | 5/2(2x-3)(x+1)=10x-5 | | 3/5r=62 | | 3^x=5^1-x | | -6x2+22x+40=0 |