49x2-4(Y+11)=3Y-2

Simple and best practice solution for 49x2-4(Y+11)=3Y-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 49x2-4(Y+11)=3Y-2 equation:



49x^2-4(+11)=3-2
We move all terms to the left:
49x^2-4(+11)-(3-2)=0
We add all the numbers together, and all the variables
49x^2-411-1=0
We add all the numbers together, and all the variables
49x^2-412=0
a = 49; b = 0; c = -412;
Δ = b2-4ac
Δ = 02-4·49·(-412)
Δ = 80752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80752}=\sqrt{784*103}=\sqrt{784}*\sqrt{103}=28\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{103}}{2*49}=\frac{0-28\sqrt{103}}{98} =-\frac{28\sqrt{103}}{98} =-\frac{2\sqrt{103}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{103}}{2*49}=\frac{0+28\sqrt{103}}{98} =\frac{28\sqrt{103}}{98} =\frac{2\sqrt{103}}{7} $

See similar equations:

| 12*z=24- | | y=2/5*0-2 | | 7x-5=3x-13+2x | | (9x+40)=83 | | y=-6-2/2 | | 4t+3.5t=9 | | 6,5+r=1,48 | | (3y^2-6y+5)=(-4y^2+7y+2) | | y=12*0+6 | | 6d-3d=18 | | 17x-13x=20 | | q-0.7=1.4 | | y=7*0-14 | | 7g-2=42 | | (2x-2)/2x^2−2x−10=0 | | 1/4n+3/1=8 | | 75u+2=12. | | 6n=30+2(n+4) | | 3x-5*0=30 | | 4x-6=1x-2 | | 1/2(6x+20)=1/4(16x-8) | | -6x+6=-1x-1 | | 6n=30+3n(–4) | | −7−6x=-31 | | 5x+29=44 | | 6x-3=11x+1 | | 5/2c=81/3= | | 1/25=5^3x+1 | | 0=13h-4h | | 10x=130—3x | | -17+6x=-59 | | 11n^2-4n-13=-5+10n^2 |

Equations solver categories