If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49y^2-70y=0
a = 49; b = -70; c = 0;
Δ = b2-4ac
Δ = -702-4·49·0
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-70}{2*49}=\frac{0}{98} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+70}{2*49}=\frac{140}{98} =1+3/7 $
| 9(8x-9.5)=-16.5+8x | | 7(x+1)=18x | | 2.2=8.6+y | | 24n*12n=343n | | (0.1x+5)(0.2x-1)(x-1)=0 | | (3.14)(x²)=50.24 | | -2=v/9-2 | | 1.3=(1.2,000,000+x)/400,000+x | | (5-9x/6)=-2 | | x+2x+50+40=180 | | 30+2x+x=90 | | -16.5+8x=9(2x-9.5) | | 4a^2+9=12a | | 2r^2+3=64 | | 3+x=1.3 | | (2x)^+4x-1248=0 | | 9v+39=2(v+2) | | x^2-5x=1=0 | | 16-3z=7 | | 11x12=9x-32 | | -5a+18+8a=3a-6a | | 0.57+0.21r=0.4881 | | 2x*(x-3)=(x*x)*1.25 | | w*(w+40)=6000 | | 4/x*7=10 | | (16+2x)*1(2+2x)=396 | | 30+5/2r=-30 | | r+11+8r=29+r | | 36t-5=15t+13 | | 8x-12+5x+22=180 | | 1+6k=6k+1 | | 6a-3=a+12 |