If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=9k^2
We move all terms to the left:
4-(9k^2)=0
a = -9; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-9)·4
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-9}=\frac{-12}{-18} =2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-9}=\frac{12}{-18} =-2/3 $
| -9(x+5)=-6x-42 | | -3y+2y-1=-2y+5-4 | | +(-2)-(3)-(1)-(1)+(1)+(2)-(3)=x | | -3y+2y-1=2y+5-4 | | 2x+18=2x-1 | | 6y-2+10=64 | | 2x^2+6x-16=2x | | 24x3-8x2=0 | | 5x-49+2x+21=180 | | 5x+14-2x=x | | 4/13(y-3)-53/13=-5 | | 3x2+11x-4=0 | | 4(x-2)^2=400 | | 7x^2-6x+6=-x | | x+5=-1.2 | | 6y+9=6(y+5)-21 | | 0.2x+3.1=4.1 | | 12-n/5=-7+n/5 | | 8x^2*3x+8=0 | | y=-16^2+24+16.4 | | y1=-16^2+24+16.4 | | 4n+16=-2+2n | | 8x^2=-3x-8 | | 5z+8=5(z+5)-20 | | -2.5x-48=-2x-32 | | 3-7n+4n=41-98 | | 2a^2+6a+2=-2 | | 7=-5x+2x(-7) | | 56-x/4=-52. | | 4y^2-20y+24=0 | | 5x^2=7x+7 | | 8+4n=-12-n |