If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=b2
We move all terms to the left:
4-(b2)=0
We add all the numbers together, and all the variables
-1b^2+4=0
a = -1; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-1)·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*-1}=\frac{-4}{-2} =+2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*-1}=\frac{4}{-2} =-2 $
| 2(4y+8)-5=67 | | 16=g2 | | 2(x–3)=-3 | | 2(4y+8)-5=6 | | 3x+6=2×-2 | | 20x-20=19x+42 | | 27x-1.5=4.2 | | 2x²-56=0 | | 4x+1=9x=106 | | 5=–7/d | | 154=-4(3+6r)+24r | | 2.7-1.5y=4.2 | | 2p/3=8/15 | | x(7x+2)=2x^2-2x+1 | | 2(g+4)+-3=3 | | (x^2)-8x=9 | | x+x-3+2x-1=30 | | 2n+1/3n-2=9/10 | | x(x+1)=13.64 | | -3(d-8)=-3 | | x+3+2x-1=30 | | 72/r=-9 | | 3=k*(-2) | | 2(q-4)+5=9 | | 2(h+3)+5=19 | | 0k=-5 | | 0k=-5¨ | | 132=(4x+17)+(5x+5)+x | | 6+4(2x-3)=5-(x+2) | | 3=3(y+-1) | | 13-k=-4 | | 0=1-(x-1)2 |