If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4X^2+12X+4=0
a = 4; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·4·4
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{5}}{2*4}=\frac{-12-4\sqrt{5}}{8} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{5}}{2*4}=\frac{-12+4\sqrt{5}}{8} $
| y=25(8)+50 | | -6x=-4x+9 | | 3v=4v-1 | | 12=1/2c-16 | | (3/11)x-1=(7/11)x+9 | | (3/11)x-1=(7/11)x+9* | | (1/2x+1)(2/3x+4)=0 | | 675=9(-12x-9) | | -138=-5-7r | | g/2+1=-5 | | 5(3x+2)=4(x-3) | | 14(-11x-37)=1330 | | -12v=6v+18-9v | | 4k-2=42 | | 4x=x+57 | | 5(3x+11)+10=35 | | 12z-36=16z+8-16 | | -111-x=5x+231 | | 10p+4=184 | | -3v+5(v+2)=-4 | | -28=2-10n | | F(n)=n^2-2n-15 | | 2x(8x+)=x=2 | | 16=8(u-2)+8u | | -343+x=11x+117 | | k/4-10=-12 | | 24=-8x+6(x+2) | | 44-4x=22+5 | | 78=-6(4x+3) | | a/6+9=7 | | 0.80s+8=12 | | 4(1+3r)=-68 |