If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-9=35
We move all terms to the left:
4a^2-9-(35)=0
We add all the numbers together, and all the variables
4a^2-44=0
a = 4; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·4·(-44)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*4}=\frac{0-8\sqrt{11}}{8} =-\frac{8\sqrt{11}}{8} =-\sqrt{11} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*4}=\frac{0+8\sqrt{11}}{8} =\frac{8\sqrt{11}}{8} =\sqrt{11} $
| E^8x+3=12 | | 4s^2–11s+6=0 | | 3w2=588 | | 3s^2–14s+15=0 | | -4x+3(2x-7)=3x-12+4 | | (3/2)^6x+2=27/8 | | X^3-3x^2+5x-6=0 | | 4(x+6)=2(x-8) | | m/2+18=14 | | 529q^2–1=0 | | 15(x+3)=2x*12 | | 9=4x=9=x | | 3x+3=3(-5x+4) | | 16x^2-40-24=0 | | 7−5+3x−1=x+ | | 2e^2–27e–14=0 | | h/2+11=15 | | (7x-5)(4x+9)=0 | | 2d^2–27d–14=0 | | 2z^2–27z–14=0 | | 2f^2+14f=0 | | E^5x-2=14 | | 2=2g-6 | | 1/8x=√2 | | 4y+2y=245 | | 1586=26(p+20) | | 3x-6=6(2x+3x)-5 | | 52=7f | | 7(x+(-5))=2(x-10) | | x-12*√(x)+32=0 | | 2w^2–15w+7=0 | | 8(x+3)-3x=3(x-8)+10 |