If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2=196
We move all terms to the left:
4a^2-(196)=0
a = 4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·4·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*4}=\frac{-56}{8} =-7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*4}=\frac{56}{8} =7 $
| 4^5+4^7=2^x | | 9((x-4)(x-4))-25=119 | | -14n+13=-13n-7 | | x^2-32x+160=0 | | -14+4(x-4)+6x=3x-16 | | -30x+270-x+9=0 | | 7(3/5x-14)=28 | | 20=v− | | 12x+30=12 | | 9x^2+30x+35=10 | | X^2-8=4x-12 | | 12y+20=17y | | 20=v−20=v− | | V=r2 | | 36-2x=-x=2 | | 3(x-6)-2(x+4)=-20 | | 6(2x+5)=12 | | 2/3x+1/2=2/5-1/3x+2/5 | | A=r2 | | -x^2+32x-160=0 | | (2x+1)/3+(1/2)=3x | | F(10)=2x+4 | | w+3=−4w+3=−4. | | 6w-40=-2(w-8) | | 6b+1=-4b-9 | | 2b+6(b-4);b=8 | | 3^(3x)=(6^(9x))+4 | | 17=2x-2 | | C=15n+85C=15n+85 | | 5(2c+7)-3c=7(c+5 | | -38-(-35)=x/2 | | 2x-12=3x-3+ |