If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b(b+5)8=0
We multiply parentheses
32b^2+160b=0
a = 32; b = 160; c = 0;
Δ = b2-4ac
Δ = 1602-4·32·0
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-160}{2*32}=\frac{-320}{64} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+160}{2*32}=\frac{0}{64} =0 $
| 4b(b+5)-8=0 | | 9u+5=5(u-3) | | 3v^2-12v-135=0 | | 6(v+3)=-3v-36 | | -5x+27=-7(x-5) | | 56-(-6)-e=17 | | 7(-6)+d=14 | | -5c+(-8)=22 | | -21=-4w+7(w-6) | | 37=2y+5(y+6) | | 32=2v+2(v-4) | | -6u+4(u+3)=16 | | 36=5x+2(x-3) | | -6x+-3+7=-5 | | (80-x)=2/3 | | 12x4x=24 | | -3(2m+1)=7=-5 | | 260-y=158 | | 8x+114=210 | | -x+5=199 | | 2x-4x=36 | | 9^-4r=58 | | 2^n-^8=89 | | (x-12)+2x+48+x=180 | | 2^n-8=89 | | 3x+3+5x-1=180 | | 9*13^x=3 | | 9x13^x=3 | | (3x=23) | | 10^m-2=-38 | | E^n=16 | | 2z+20-3z=1.5(6z+4 |