If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-19b+17=0
a = 4; b = -19; c = +17;
Δ = b2-4ac
Δ = -192-4·4·17
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{89}}{2*4}=\frac{19-\sqrt{89}}{8} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{89}}{2*4}=\frac{19+\sqrt{89}}{8} $
| x/5x-2=13 | | 4x22;x=5.8 | | 4(1.75+x)=18. | | 5x+24=21x+72 | | 10•2x•4x=16 | | 8a+4=32a= | | x/1.3=1.56 | | 3c=8.1 | | 7x+12-4x=51 | | ½(2x+16)+2=30 | | 3x+4+3x+4+9x+8=180 | | F(-3)=4-3x | | h+6.2=11.4 | | 1.50-0.50m=20 | | -9e=54 | | m;m-4.2=5.1 | | 7(x+6=3(x+9) | | 2.2x=19.8= | | 5a-12=12 | | 15-8m=10 | | x^2-8=-24 | | 22-10b=10 | | 45x+18=351 | | 6x-4=118 | | 3c−7=1.1 | | -6.12=3.14m | | 10=1-3m | | 2-7x=6-4x-(2(68)+3x | | 10x-37=3x-4x | | 7x/5=3x-5 | | z-2/6=7/6 | | .9x+9=11x–2x+9 |