4d+2=(d-1)(d-3)

Simple and best practice solution for 4d+2=(d-1)(d-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4d+2=(d-1)(d-3) equation:



4d+2=(d-1)(d-3)
We move all terms to the left:
4d+2-((d-1)(d-3))=0
We multiply parentheses ..
-((+d^2-3d-1d+3))+4d+2=0
We calculate terms in parentheses: -((+d^2-3d-1d+3)), so:
(+d^2-3d-1d+3)
We get rid of parentheses
d^2-3d-1d+3
We add all the numbers together, and all the variables
d^2-4d+3
Back to the equation:
-(d^2-4d+3)
We add all the numbers together, and all the variables
4d-(d^2-4d+3)+2=0
We get rid of parentheses
-d^2+4d+4d-3+2=0
We add all the numbers together, and all the variables
-1d^2+8d-1=0
a = -1; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·(-1)·(-1)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{15}}{2*-1}=\frac{-8-2\sqrt{15}}{-2} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{15}}{2*-1}=\frac{-8+2\sqrt{15}}{-2} $

See similar equations:

| 2(104+3x)=-3x+28 | | 2(-27-x)=5(-6-x) | | 7n^2-22n-24=0 | | 1.5^(x-1)=14.5 | | 0.5x^2+x+2=0 | | -3(-2-7k)=153 | | 2(-27-x)=6(-6-x) | | ℎ= | | 9+5x+17-10x=10x+35 | | 3p-p=8 | | 12(21-x)=6(-3x+28) | | 7x=0.21 | | 1.8x=4x-32 | | 8w-12=-4(w+6) | | 2(72+x)=3(-x+28) | | 2n+16=-5n+51 | | 2n+16=-5n+51* | | -8(1+3n)=-176 | | 5(-4+3x)=-100 | | 3x-3+2x=x+2 | | 49-5x=34 | | x*9,600=12 | | 44=8x-20 | | 100000=5x+x | | z*7/9=3 | | 5x-18=x-4 | | (6x-1)(6x+1)-4x(9x+3)=-4 | | 67x+24=22 | | 115+-5x= | | 67x=24 | | y/12+6=-19 | | -12x-30=114 |

Equations solver categories