If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2+9h+4=0
a = 4; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·4·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*4}=\frac{-9-\sqrt{17}}{8} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*4}=\frac{-9+\sqrt{17}}{8} $
| 2(12-11n)+9n=11n-9(n+4) | | √x^2−x−2=x−2 | | 1+2b−13=12-4b-2b | | X+10+x+x=x+20+10+10 | | √x2−x−2=x−2 | | 5y+2=4.6 | | 37=-3-5n | | -6(7+5x)=32+7x | | 5-12(1+5x)=-11(x+11)-11x | | -w/9=-28 | | 10/y+11=25/−3y | | (-8)-(5y)=12-9y | | 4(x-7)=3x+12 | | 6t^2-93t+45=0 | | 2(x+4)+3(x+1)=41 | | 3(-6+7a)=-34+5a | | 4g-7=2g-11 | | 4(x-7)=3×+12 | | 6u-3u-3u+3u=9 | | 10x^2+3x-0.3=0 | | 21=-y/7 | | 2s^2-13s-15=0 | | -10x^2+3x-0.3=0 | | 59=x-16+4x | | -3x-8=180 | | 19p+4p-14p+16p-18p=-14 | | 17=8-9x | | 4(x+3)2x=x-8 | | -10x^2-3x-0.3=0 | | -8=8p=-4(p+8) | | c=22=52 | | 3x2−11x+10=0 |