If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2-9=0
a = 4; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·4·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*4}=\frac{-12}{8} =-1+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*4}=\frac{12}{8} =1+1/2 $
| g(4)=5(4) | | X=6x-32 | | 2r-(-17r)+10r+(-18r)=11 | | 12.32=u+7 | | 6/7m-1/7=7/70 | | n(2/3)=10 | | -16+x=16 | | 4+7y/3y=24 | | 2n+3=4+2n | | 3c+10=3c+10 | | 3x+7=124 | | 180=((-x-2x)^2)+((-7+5)^2) | | -8=2p-4p | | 7x-2(x-16)=-12 | | -10+3v=5v+2 | | 9=6+n | | (2/3)n=10 | | 5x-8-10x-4=4x+10 | | 63x=27 | | 3c=3c+10 | | -6(v-3)=-(v-3) | | -2x+8-5x-1=21 | | 8x-10+3x+40=180 | | 3p-7p-16p=-12 | | -8y-3=-3+8y | | 4+5(m+9)=100+3m | | f(4)=(4-2)³-6 | | X=(3x-10)(x+40) | | 5(2x=3)=3(3x+12) | | 8+4b=2b+6b | | 156-2x=180 | | 3x-13+(2x+4)=116 |