If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+20m=0
a = 4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*4}=\frac{-40}{8} =-5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*4}=\frac{0}{8} =0 $
| 2x-24+8=40 | | 4x-(2-4)2+24=0 | | x×5=40 | | x+3/2=5x/6 | | 3(x-7)+20=12+2(x+3) | | 1.2×a=60 | | 4/14=x(7/2) | | D2+6d+13=0 | | 4/14=x7/2 | | 4/14=x/(7/2) | | 4x+0,5x=3 | | x+1/10=15 | | P(x)=-3x | | 2(3)+4y=20 | | 2(2)+4y=20 | | 2(10)+4y=20 | | k^2-11k+23=0 | | 1x12x3=10 | | (a^2+6)/2=11 | | a2+6/2=11 | | 2×4x-6=10x-22 | | 8z-3;z=13 | | -|x|x=48 | | 8x^2+6=46 | | a/5=0.5 | | (2x-5)/3+3=24 | | -5y+3=2(4y+12) | | 15•6=(x-2)/3 | | f^2=16 | | 3=(7x-5x) | | 1,92x^2-4,17x+1,13=0 | | 5a=a=24 |