4m2=(m+4)(2-m)

Simple and best practice solution for 4m2=(m+4)(2-m) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4m2=(m+4)(2-m) equation:



4m^2=(m+4)(2-m)
We move all terms to the left:
4m^2-((m+4)(2-m))=0
We add all the numbers together, and all the variables
4m^2-((m+4)(-1m+2))=0
We multiply parentheses ..
4m^2-((-1m^2+2m-4m+8))=0
We calculate terms in parentheses: -((-1m^2+2m-4m+8)), so:
(-1m^2+2m-4m+8)
We get rid of parentheses
-1m^2+2m-4m+8
We add all the numbers together, and all the variables
-1m^2-2m+8
Back to the equation:
-(-1m^2-2m+8)
We get rid of parentheses
4m^2+1m^2+2m-8=0
We add all the numbers together, and all the variables
5m^2+2m-8=0
a = 5; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·5·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*5}=\frac{-2-2\sqrt{41}}{10} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*5}=\frac{-2+2\sqrt{41}}{10} $

See similar equations:

| 3x/4+-1/4=-5/11 | | 7(n-4)+3(4n+3)=-38 | | 1/4(8x+12)+1/2(6x+7)=14 | | x+7+3x+1=90 | | 15-3x-3+6x=42 | | -33+m=-10 | | b-2-6b+14=-b-3b | | 6-2x=3x-12+15 | | 6x+9-4x+4=3 | | -6-2/393x-14)=5/3x-4 | | 5x-15=3x+21 | | 4x-6=0.3 | | 3n+3-8=-11 | | 26=n-(-4) | | 3a-6a+2=8a+20-5 | | -5n+4+2=-4 | | 4(-1r+4)=12 | | .4y+2=18 | | a2+7a-3=0 | | 7m-22=24 | | r+3-8r=10 | | m+(-10)=70 | | 3x-6=12-4x | | 18g-12=1-g | | 10x+x=2 | | 1/3n^2+1/3n-10=0 | | -5x=-6x-6 | | 4x^2+24x-23=0 | | p=L.W | | 6^(x-5)=7 | | 5(4x-2)=11 | | 1/4x-2=16 |

Equations solver categories