If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+12n-16=0
a = 4; b = 12; c = -16;
Δ = b2-4ac
Δ = 122-4·4·(-16)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-20}{2*4}=\frac{-32}{8} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+20}{2*4}=\frac{8}{8} =1 $
| 1/2m+5=11 | | 5x-2=-6x+130 | | 23=e-3 | | 6-x+9=11-2x | | 5(3a-4)-3a-5-2a=15 | | 8x-3x+14-10x=-11 | | -4x-9=4x-89 | | -4(x=5)=4x-20 | | x+8.73=57.2 | | 1/2m+5=1 | | 12w-6+5w=-29 | | -4u-36=2(u-6) | | -7x-1=89+3x | | .2u·4(u=8) | | (27x-12)+(20x+9)=180 | | 7x+34=9x+46=144 | | -13r-7+21r+15=48 | | -3-5x=x-33 | | x/9=5.2 | | 3/7=d/14 | | –10z+12=–78 | | p–3+ 10=9 | | 5(b-1)=65 | | 60=-24-6b+10+28b | | 1=-7+v/4 | | x+5=41+7x | | (3x+14)+(9x-4)=180 | | 2x-1=¾x+9* | | 8x–2=14x+16 | | 7.4-k=5;k=3.4 | | 7m-1=-71 | | -x+6=41-6x |