If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+5n-250=0
a = 4; b = 5; c = -250;
Δ = b2-4ac
Δ = 52-4·4·(-250)
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{161}}{2*4}=\frac{-5-5\sqrt{161}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{161}}{2*4}=\frac{-5+5\sqrt{161}}{8} $
| (1.5+1.5)v=1.5(2.5)+1.5(-2.5) | | x+13=24/4x+13=24 | | .756=x/(x+10000) | | 6c+5/3=4c+1/2+5c/6 | | 1=0.25(2x+8) | | 3a+20=70 | | (4+9+16÷4)-8-3×5=z | | (4+9+16÷4)-8-3×5=s | | 55x+2=2*2-2x55 | | 3(x+1)=4(x+5) | | 6m+7=49* | | 3.8+4.5x-1.4=8.5 | | 0.25/3=x/11/3 | | -685+m/4=-11 | | 2x=40-12 | | 17x-6=7x-6 | | (X+4)+(3x-7)=(x-2)+(3x+8) | | 7x+x+8=56 | | x+2x+4x=−7x | | 7x^2+86x+399=0 | | (9−x)−(2−x)=7 | | 9−x−2−x=7 | | .3x+.5x(50-x)=18 | | 49x+2=0 | | -6x+-55=1 | | -6x+(-55)=1 | | -6x-20=70 | | 15x^2-46+16=0 | | (3a-2)(5a-4)=(3a-2) | | 2(-1)-9y=-25 | | n+5-1=-1 | | n+5−1=−1 |