If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+8n=0
a = 4; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·4·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*4}=\frac{-16}{8} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*4}=\frac{0}{8} =0 $
| -2+8x-2=12 | | 3x-5(x-2)=-3+5x-15 | | 3x+2x+10+2x5+2x-15=360 | | x-11-4x=16+4x | | x3+4x2+-11x+-30=0 | | 4r+10=38 | | 1x-(.5x)+6=10 | | 3x-5(x-2)=-3+5-15 | | x3+5x2+6x+30=0 | | 2x^2+14x-1080=0 | | -6p-1+7=-6 | | 18x-5=3(6x-2 | | 3/4b-2/3b=-9 | | 2x−x+7=x+3+4 | | 37=3u+13 | | 3x-2/2x-3=7/3 | | x2-4x-5=-8 | | 11/x+3=4 | | 3(3n-1)-3(7n-8)=-3 | | 3u=9/8 | | 5+x^2=4x+2 | | 12+0.4x=0.1(60+x) | | -6(7-2v)=-102 | | 3/8y=2+3/4 | | -(7-2x)=3(1+x)-2 | | 3/4(h+3)=9 | | 5/4+5=1/4+1/4x | | 40,000−12.5x=0 | | 5x+8x=21 | | -63-9x=11(x+27) | | (3x+2)/(2x-3)=-3/2 | | 7-1.066=z/9.6 |