If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2+5p+1=0
a = 4; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·4·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*4}=\frac{-8}{8} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*4}=\frac{-2}{8} =-1/4 $
| 3(y+11)=2(y-2) | | y=6-3y/4 | | 3-2n/5=2n | | (a/20)=(20/(a-19)) | | 3w/7+2=w | | a^2-19a-400=0 | | 2x/5+3=23*5 | | 45B=10x | | Y60+2x=74 | | (c+7)(c-7)=0 | | 2y+5y-3y=0 | | 27-4d=5d | | 15y+10=0 | | 18y+3=0 | | y=1E-10*0.005 | | x=18/39 | | 3(x+4)-5=10 | | 3(4n+7)(2n+3)=0 | | 3x-3^2x=0 | | 18c-2=360 | | 174x=-12 | | (c+6)(c-1)=0 | | a2+10a+17=0 | | -4x+2x=18+16 | | -5x+3x=8-3 | | -12x+10x=12-3 | | -5x-3x=-7-4 | | -7x+8x=-2+8 | | -3x+8=2x-3 | | -4x-3x=-2x+16 | | 13x-8=10x=7 | | (2x+5)=(-4x+7) |