If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+28q+49=0
a = 4; b = 28; c = +49;
Δ = b2-4ac
Δ = 282-4·4·49
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-28}{8}=-3+1/2$
| 10+z/2=-6 | | 8x-7+7x-10+67-2x=180 | | -3(x+4)-8x=21 | | 6=3r-9 | | 12x-4x+7-9=14 | | 8h+5-3h=4(2h-1) | | 2-6n=-5n-2 | | x+19+20+x=21 | | -3b+5=16 | | (7x+4)−(5x−4)=0 | | k-7=9/10 | | 3/2v-5/7v=1 | | 1/4y+1/5=7/20 | | 1/2y=y+10 | | 13p+17=11p+17 | | -9u-26=-4(u-9) | | -2(a+6)=16 | | 2x|=-8x=4x=-4x=6 | | 9x^2−64=0 | | -3(3+x)+4(x-6)=-4) | | 100/z=4 | | X(x+4)-9-4x=0 | | 8-m/6=13 | | 7=a/5-9 | | 51=7(-1+2v)+19 | | 5g+3.55=26.4 | | 21t+12=-24 | | -186=-8+8v | | 26.40=5g+3.55 | | 11=2(f-3)-4f | | 47-12x=-6(8+2x) | | 1/5(y+3)+6=1/3(5y-2)-25 |