If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r+3-1=2(2r+2)-r2
We move all terms to the left:
4r+3-1-(2(2r+2)-r2)=0
We add all the numbers together, and all the variables
4r-(2(2r+2)-r2)+2=0
We calculate terms in parentheses: -(2(2r+2)-r2), so:We get rid of parentheses
2(2r+2)-r2
We add all the numbers together, and all the variables
-1r^2+2(2r+2)
We multiply parentheses
-1r^2+4r+4
Back to the equation:
-(-1r^2+4r+4)
1r^2-4r+4r-4+2=0
We add all the numbers together, and all the variables
r^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| 2/5x+7=25 | | 1+3(x-1)=2x | | 3x-21-5x=-1 | | 33x-26.4=1.2 | | 1/2b+4=2(b+2) | | k+37+k+67+90=180 | | x^2+8x-48=0 | | 4x-42=-2x+78 | | -1+-2s=1 | | (53-16x)=8-(3x+7) | | -27=+5m=-27 | | x/5-15=1 | | F(x)=3x^2-8x-3 | | -7x-74=-10x+34 | | 4(1.5-3p)=0 | | 3m=6=3(m+2) | | t/2+5=8 | | -13m+7m=-72 | | -46+11x=7x+46 | | 3(m*1=6+2m | | 4•x=24 | | -5x3(x+18)=110 | | 14-2x-5=0 | | -5x3(x+18)=-110 | | 25x+15=-35 | | 2x+x=11+3-7x=15 | | -2y+15=-3 | | 5u^2-5u-30=-u^2-5u-6 | | -2y+15=12 | | 6t-8t=4t+20 | | x+4,12=-0,08 | | 3/7m=1/2 |