If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2+10r=4
We move all terms to the left:
4r^2+10r-(4)=0
a = 4; b = 10; c = -4;
Δ = b2-4ac
Δ = 102-4·4·(-4)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*4}=\frac{-10-2\sqrt{41}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*4}=\frac{-10+2\sqrt{41}}{8} $
| 96-x=187 | | 4f+6=39 | | (-1)=w+33/9 | | 25x+150=55x | | -7/2r=-63/4 | | 10=-5(g-91) | | 2p-1/3=5 | | 9+(1.20x)=12+(0.75x) | | (-1)=2k-5 | | w/2-(-2)=4 | | 7y+1=55 | | -5=h-13/(-9) | | 3x+5x=24x=3x | | z/2-(-13)=17 | | 9x^2+66x+132=0 | | r+9=42 | | s/7+63=56 | | 5x÷12=15 | | 2w-(-2)=8 | | 1+-7v=50 | | 5x-(5+9x)=4+(x-6) | | j-35/5=9 | | 18=7-r | | 8x2+12=-9 | | -2(y=12)=-9 | | 3x-12,x=4 | | -2(y=12)=-94 | | n/7-61=-57 | | 7(x-5)+31=6x-3 | | -4(5x-7)+3(7x-1)-2=7-4 | | 7(x-2)+12=7x-1 | | 4+x*2/3=-16 |