If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4s^2=36
We move all terms to the left:
4s^2-(36)=0
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $
| -3x+20=29 | | 3.8t=4-4.4t-37 | | 11w-200=2 | | 4h2+24h–133=0 | | 45=y+98 | | 11w-200=0 | | 12000000=3x*2x | | c+152=854 | | 6a^2-13a+40=0 | | 6(x-2)=-13+6x | | 20=y+18= | | 12n=60= | | -0,5x+4=0,75x-1 | | 12x-48;x=3 | | 0=4t^2-25t | | 4*3^2x=32 | | 4x3^2x=32 | | -7u+11+5=2u+31 | | X2+13x+42=9 | | 5/6+3y=9 | | 5/7=7y | | G(x)=7^0 | | 3=k9 | | 4y2+43y+30=0 | | X2-35x-36=0 | | (c-5)/2=10 | | -7(5+4f)=31 | | -9c+5-6=-23 | | 3(x-5)^2=675 | | 25=8v+7v | | 51/m=3 | | 6b-5+9b=22 |