If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+2t-1=0
a = 4; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·4·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*4}=\frac{-2-2\sqrt{5}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*4}=\frac{-2+2\sqrt{5}}{8} $
| 35x=225 | | (x+9)(7x+21)=0 | | 1.5x+7=1.5x | | x+x+5=35+ | | 3+1.5x+4=1.5x | | 1/3x+2=5/3+4 | | 5=60=p | | 16t^2+2t-3=0 | | 8x-11=6x+25 | | 6x+14+3x+13=3x+9+12 | | -(s+14)=0 | | 3(h-14)=15 | | -8=-(f+-7) | | 3(p+13)=-3 | | y+2.1=8.71 | | y-6.4=7.9 | | 16x^2=90-180x+9x^2 | | j/4+17=20 | | 39c=78=33c | | 5k+8=65 | | 7j+6=84 | | 5s+23=63 | | 7+6q=73 | | 3x+72=32 | | 0.5x-12+48=180 | | -1/3x=-2/3x+3 | | 13x+46=123 | | x^2-80=-2x | | 11x+63=92 | | 3f-9f^=6 | | 26x+46=76 | | 5t+17=3t+11 |