If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+2t-2=0
a = 4; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·4·(-2)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6}{2*4}=\frac{-8}{8} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6}{2*4}=\frac{4}{8} =1/2 $
| 4x+43+9x-26+2x-12=180 | | 5x=8=3x=4=-40=4 | | x/8+4=60 | | x/8-4=60 | | 2.4=x-2.7 | | 9x+4=0x+7 | | 10=5x^2 | | 12m^2+24m+12=3 | | 9x+4=2x7 | | 1x+4=2x+7 | | -11+p=p | | 2.2c+3=c-0.6 | | (2x-2)=45x | | 5/3x-5=4/3x+7 | | 5x+4=9x+7 | | -6+2(-2x-4)=8 | | (6x+5)–(8x+15)=0 | | 10.4=-4-4.8x | | y/2=5/3 | | 17-2(x-3)=2x+3. | | V(x)=-X^3-x^2+6x | | 16-5a+2a-1=41-9 | | 2(x-3)+1=-4(2x+5)+55 | | 6+4x=3=x | | (11-2n)(10-2n)+4n(n-1)=4 | | x^2+1.20x-25=0 | | 35z2–19z=0 | | 7(-x-4)=-21 | | 8x-15x-2=90 | | 2x-7=2x/3-4 | | (5x=60)=(3x-40) | | -2x-38=-7(x+2)+1 |