If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+7t+3=0
a = 4; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*4}=\frac{-8}{8} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*4}=\frac{-6}{8} =-3/4 $
| 2x-4(x-5)=-4+3x-16 | | 2(1-x)=-3(x+3)+1 | | 5y+3+4y=3y-15 | | (2x+46)+(3x-6)=180 | | 3a-1=2a+8 | | 2x+8=5x-25=4x-8=6x-12 | | 8=109+3x | | 19=7x=3-3x | | 7y-9-2y+8=0 | | 2(x-1)/5=2(x+1)/7 | | 7y-20=20y-10 | | 3(g-2)=4g-6 | | -4+9n=149 | | 3v^2-46v+15=0 | | 3(4x+1)-5=4 | | k/5-14=6 | | -162=-9(6+x) | | x+17=-46 | | 1/2x+5=2/5x-4 | | 51=6n+3 | | –40=5x | | 4=r-12 | | 1/5(2(x-1)+23)=x | | (4x+2)=6x+2x+4 | | 3x+12+2+6=64 | | -203=-7(9+k) | | 5x-108=8x+126 | | 5x(x^2+2)=x | | -6x-22=-46 | | 5x(x+4)=5x+20 | | (5k-2)=10(3k+9) | | -x-3=25-3x |