If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+11u+6=0
a = 4; b = 11; c = +6;
Δ = b2-4ac
Δ = 112-4·4·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*4}=\frac{-16}{8} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*4}=\frac{-6}{8} =-3/4 $
| -5a=45 | | 3(x+1)-5(x+2)=10 | | -6=4x+2(-4x+19) | | -5×a=45 | | 2x=2^x | | 3x-5(x-11)=73 | | x+165=180180-165x=15 | | -1.5t=10.5 | | 22/11=x/7 | | 3/4(12x-8)=2x+3x-4 | | 7x^2+41x–6=0 | | 35h=140 | | 7s2+41s–6=0 | | 7s^2+41s–6=0 | | 22÷11=x÷7 | | 4x-5(5x-15)=-30 | | 4.6×y=44.16 | | x=2/7=4/7 | | 8+36x=13 | | 2x+x+160=180 | | -48=-4x+2(6x+12) | | 6e=e+15 | | (x+2)(x+5)=(x+)² | | 4(x2)=7x+1 | | 6(x+3)−3=39 | | (3/4x)-(3/16)=3/x) | | (x+2)(x+5)=(x+3) | | c+2=-10 | | 6h2−3h−8=0 | | (x+2)(x+5)=(x+3)² | | 2923=37(p+10) | | 10y–3y+22=71y= |