If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+11u-31=0
a = 4; b = 11; c = -31;
Δ = b2-4ac
Δ = 112-4·4·(-31)
Δ = 617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{617}}{2*4}=\frac{-11-\sqrt{617}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{617}}{2*4}=\frac{-11+\sqrt{617}}{8} $
| 3(k-4)=18 | | i+9=7i+9-6i | | v-3=-12 | | 41 (x+5)2−1=3 | | 5x+4(-5+3x)=1+x | | 1/4 (x+5)2−1=3 | | 42=7x+20 | | 3(x)=(3)-12=15+2x | | -33=x+6 | | 4x+15=3x-45=3x | | 7x-15+3x+18+x+6=180 | | -x/5=3x/5+16 | | 10=1/3f-9 | | 18/n=21/28= | | -(y-7)=14 | | (10x-4)+7=5(x+1) | | 2/3h−31 h+11=8 | | F(x)=4(x+9) | | 6(1-6x)=-246 | | (2x+5/6)=(x/8) | | -3t(3)+-2t(2)=2 | | 24=-2x+18 | | 15x-3=8x+13 | | 3n+3=-5+2n | | y+3.98=5.67 | | w-2.9=7.99 | | g.2=24 | | 2(y-6)=-8 | | 1360=(x+20)17 | | 4u^2+11u-3=0 | | x+(x+9)/(3)=6 | | 0.02+0.0175(15000-x)=277.5 |